
02.02.21, 13:45Depth Precision Visualized | NVIDIA Developer

Page 1 of 11https://developer.nvidia.com/content/depth-precision-visualized

Home (/) > GameWorks (/gameworks) > Blog (/blog/5007) > Depth Precision Visualized

Tags:

GameWorks Expert Developer (/category/tags/gameworks-expert-developer),

DX12 (/taxonomy/term/278), DX11 (/category/tags/dx11)

 (/#facebook) (/#twitter) (/#linkedin)

Depth Precision Visualized

By

Nathan Reed, posted Jul 15 2015 at 03:54PM

Depth precision is a pain in the ass that

every graphics programmer has to struggle

with sooner or later. Many articles and

papers have been written on the topic, and a

variety of different depth buffer formats and

setups are found across different games,

engines, and devices.

Because of the way it interacts with

perspective projection, GPU hardware depth

mapping is a little recondite and studying the equations may not make things immediately

obvious. To get an intuition for how it works, it's helpful to draw some pictures.

This article has three main parts. In the first part, I try to provide some motivation for nonlinear

depth mapping. Second, I present some diagrams to help understand how nonlinear depth

mapping works in different situations, intuitively and visually. The third part is a discussion and

reproduction of the main results of Tightening the Precision of Perspective Rendering

(http://www.geometry.caltech.edu/pubs/UD12.pdf) by Paul Upchurch and Mathieu Desbrun

(2012), concerning the effects of floating-point roundoff error on depth precision.

Why 1/z

HOME (/)

https://developer.nvidia.com/
https://developer.nvidia.com/gameworks
https://developer.nvidia.com/blog/5007
https://developer.nvidia.com/category/tags/gameworks-expert-developer
https://developer.nvidia.com/taxonomy/term/278
https://developer.nvidia.com/category/tags/dx11
https://developer.nvidia.com/%23facebook
https://developer.nvidia.com/%23twitter
https://developer.nvidia.com/%23linkedin
http://www.geometry.caltech.edu/pubs/UD12.pdf
https://developer.nvidia.com/

02.02.21, 13:45Depth Precision Visualized | NVIDIA Developer

Page 2 of 11https://developer.nvidia.com/content/depth-precision-visualized

GPU hardware depth buffers don't typically store a linear representation of the distance an

object lies in front of the camera, contrary to what one might naïvely expect when encountering

this for the first time. Instead, the depth buffer stores a value proportional to the reciprocal of

world-space depth. I want to briefly motivate this convention.

In this article, I'll use d to represent the value stored in the depth buffer (in [0, 1]), and z to

represent world-space depth, i.e. distance along the view axis, in world units such as meters. In

general, the relationship between them is of the form

where a,b are constants related to the near and far plane settings. In other words, d is always

some linear remapping of 1/z.

On the face of it, you can imagine taking d to be any function of z you like. So why this particular

choice? There are two main reasons.

First, 1/z fits naturally into the framework of perspective projections. This is the most general

class of transformation that is guaranteed to preserve straight lines—which makes it

convenient for hardware rasterization, since straight edges of triangles stay straight in screen

space. We can generate linear remappings of 1/z by taking advantage of the perspective divide

that the hardware already performs:

The real power in this approach, of course, is that the projection matrix can be multiplied with

other matrices, allowing you to combine many transformation stages together in one.

The second reason is that 1/z is linear in screen space, as noted by Emil Persson

(http://www.humus.name/index.php?ID=255). So it's easy to interpolate d across a triangle

while rasterizing, and things like hierarchical Z-buffers, early Z-culling, and depth buffer

compression are all a lot easier to do.

Graphing Depth Maps

(/)
DEVELOPER
(/)

HOME (/)

BLOG

(HTTPS://DEVELOPER.NVIDIA.COM/BLOG/)

NEWS

(HTTPS://NEWS.DEVELOPER.NVIDIA.COM/)

FORUMS

(HTTPS://FORUMS.DEVELOPER.NVIDIA.COM/)

DOCS (HTTPS://DOCS.NVIDIA.COM/)

DOWNLOADS (/DOWNLOADS)

TRAINING (HTTPS://WWW.NVIDIA.COM/EN-

US/DEEP-LEARNING-AI/EDUCATION/)

http://www.humus.name/index.php?ID=255
https://developer.nvidia.com/
https://developer.nvidia.com/
https://developer.nvidia.com/
https://developer.nvidia.com/blog/
https://news.developer.nvidia.com/
https://forums.developer.nvidia.com/
https://docs.nvidia.com/
https://developer.nvidia.com/Downloads
https://www.nvidia.com/en-us/deep-learning-ai/education/

02.02.21, 13:45Depth Precision Visualized | NVIDIA Developer

Page 3 of 11https://developer.nvidia.com/content/depth-precision-visualized

Equations are hard; let's look at some pictures!

The way to read these graphs is left to right, then down to the bottom. Start with d, plotted on

the left axis. Because d can be an arbitrary linear remapping of 1/z, we can place 0 and 1

wherever we wish on this axis. The tick marks indicate distinct depth buffer values. For

illustrative purposes, I'm simulating a 4-bit normalized integer depth buffer, so there are 16

evenly-spaced tick marks.

Trace the tick marks horizontally to where they hit the 1/z curve, then down to the bottom axis.

That's where the distinct values fall in the world-space depth range.

The graph above shows the “standard”, vanilla depth mapping used in D3D and similar APIs.

You can immediately see how the 1/z curve leads to bunching up values close to the near plane,

and the values close to the far plane are quite spread out.

It's also easy to see why the near plane has such a profound effect on depth precision. Pulling in

the near plane will make the d range skyrocket up toward the asymptote of the 1/z curve,

leading to an even more lopsided distribution of values:

02.02.21, 13:45Depth Precision Visualized | NVIDIA Developer

Page 4 of 11https://developer.nvidia.com/content/depth-precision-visualized

Similarly, it's easy to see in this context why pushing the far plane all the way out to infinity

doesn't have that much effect. It just means extending the d range slightly down to 1/z=0:

02.02.21, 13:45Depth Precision Visualized | NVIDIA Developer

Page 5 of 11https://developer.nvidia.com/content/depth-precision-visualized

What about floating-point depth? The following graph adds tick marks corresponding to a

simulated float format with 3 exponent bits and 3 mantissa bits:

02.02.21, 13:45Depth Precision Visualized | NVIDIA Developer

Page 6 of 11https://developer.nvidia.com/content/depth-precision-visualized

There are now 40 distinct values in [0, 1]—quite a bit more than the 16 values previously, but

most of them are uselessly bunched up at the near plane where we didn't really need more

precision.

A now-widely-known trick is to reverse the depth range, mapping the near plane to d=1 and the

far plane to d=0:

02.02.21, 13:45Depth Precision Visualized | NVIDIA Developer

Page 7 of 11https://developer.nvidia.com/content/depth-precision-visualized

Much better! Now the quasi-logarithmic distribution of floating-point somewhat cancels the 1/z

nonlinearity, giving us similar precision at the near plane to an integer depth buffer, and vastly

improved precision everywhere else. The precision worsens only very slowly as you move

farther out.

The reversed-Z trick has probably been independently reinvented several times, but goes at

least as far back as a SIGGRAPH ’99 paper (https://dl.acm.org/citation.cfm?id=311579) by

Eugene Lapidous and Guofang Jiao (no open-access link available, unfortunately). It was more

recently re-popularized in blog posts by Matt Pettineo

(https://mynameismjp.wordpress.com/2010/03/22/attack-of-the-depth-buffer/) and Brano

Kemen (http://outerra.blogspot.com/2012/11/maximizing-depth-buffer-range-and.html), and

by Emil Persson's Creating Vast Game Worlds

(http://www.humus.name/Articles/Persson_CreatingVastGameWorlds.pdf) SIGGRAPH 2012

talk.

All the previous diagrams assumed [0, 1] as the post-projection depth range, which is the D3D

convention. What about OpenGL?

https://dl.acm.org/citation.cfm?id=311579
https://mynameismjp.wordpress.com/2010/03/22/attack-of-the-depth-buffer/
http://outerra.blogspot.com/2012/11/maximizing-depth-buffer-range-and.html
http://www.humus.name/Articles/Persson_CreatingVastGameWorlds.pdf

02.02.21, 13:45Depth Precision Visualized | NVIDIA Developer

Page 8 of 11https://developer.nvidia.com/content/depth-precision-visualized

OpenGL by default assumes a [-1, 1] post-projection depth range. This doesn't make a

difference for integer formats, but with floating-point, all the precision is stuck uselessly in the

middle. (The value gets mapped into [0, 1] for storage in the depth buffer later, but that doesn't

help, since the initial mapping to [-1, 1] has already destroyed all the precision in the far half of

the range.) And by symmetry, the reversed-Z trick will not do anything here.

Fortunately, in desktop OpenGL you can fix this with the widely-supported ARB_clip_control

(https://www.opengl.org/registry/specs/ARB/clip_control.txt) extension (now also core in

OpenGL 4.5 as glClipControl (http://docs.gl/gl4/glClipControl)). Unfortunately, in GL ES

you're out of luck.

The Effects of Roundoff Error

The 1/z mapping and the choice of float versus integer depth buffer are a big part of the

precision story, but not all of it. Even if you have enough depth precision to represent the scene

you're trying to render, it's easy to end up with your precision controlled by error in the

arithmetic of the vertex transformation process.

https://www.opengl.org/registry/specs/ARB/clip_control.txt
http://docs.gl/gl4/glClipControl

02.02.21, 13:45Depth Precision Visualized | NVIDIA Developer

Page 9 of 11https://developer.nvidia.com/content/depth-precision-visualized

As mentioned earlier, Upchurch and Desbrun

(http://www.geometry.caltech.edu/pubs/UD12.pdf) studied this and came up with two main

recommendations to minimize roundoff error:

1. Use an infinite far plane.

2. Keep the projection matrix separate from other matrices, and apply it in a separate

operation in the vertex shader, rather than composing it into the view matrix.

Upchurch and Desbrun came up with these recommendations through an analytical technique,

based on treating roundoff errors as small random perturbations introduced at each arithmetic

operation, and keeping track of them to first order through the transformation process. I

decided to check the results using direct simulation.

My source code is here (https://gist.github.com/Reedbeta/ae437a9acb5dc137eabf)—Python 3.4

with numpy. It works by generating a sequence of random points, ordered by depth, spaced

either linearly or logarithmically between the near and far planes. Then it passes the points

through view and projection matrices and the perspective divide, using 32-bit float precision

throughout, and optionally quantizes the final result to 24-bit integer. Finally, it runs through the

sequence and counts how many times two adjacent points (which originally had distinct depths)

have either become indistiguishable because they mapped to the same depth value, or have

actually swapped order. In other words, it measures the rate at which depth comparison errors

occur—which corresponds to issues like Z-fighting—under different scenarios.

Here are the results obtained for near = 0.1, far = 10K, with 10K linearly spaced depths. (I tried

logarithmic depth spacing and other near/far ratios as well, and while the detailed numbers

varied, the general trends in the results were the same.)

In the table, “indist” means indistinguishable (two nearby depths mapped to the same final

depth buffer value), and “swap” means that two nearby depths swapped order.

Precomposed view-

projection matrix

Separate view and

projection matrices

float32 int24 float32 int24

Unaltered Z values

(control test)

0% indist

0% swap

0% indist

0% swap

0% indist

0% swap

0% indist

0% swap

Standard projection 45% indist

18% swap

45% indist

18% swap

77% indist

0% swap

77% indist

0% swap

Infinite far plane 45% indist 45% indist 76% indist 76% indist

http://www.geometry.caltech.edu/pubs/UD12.pdf
https://gist.github.com/Reedbeta/ae437a9acb5dc137eabf

02.02.21, 13:45Depth Precision Visualized | NVIDIA Developer

Page 10 of 11https://developer.nvidia.com/content/depth-precision-visualized

Apologies for not graphing these, but there are too many dimensions to make it easy to graph!

In any case, looking at the numbers, a few general results are clear.

There is no difference between float and integer depth buffers in most setups. The

arithmetic error swamps the quantization error. In part this is because float32 and int24

have almost the same-sized ulp in [0.5, 1] (because float32 has a 23-bit mantissa), so

there actually is almost no additional quantization error over the vast majority of the depth

range.

In many cases, separating the view and projection matrices (following Upchurch and

Desbrun’s recommendation) does make some improvement. While it doesn't lower the

overall error rate, it does seem to turn swaps into indistinguishables, which is a step in

the right direction.

An infinite far plane makes only a miniscule difference in error rates. Upchurch and

Desbrun predicted a 25% reduction in absolute numerical error, but it doesn't seem to

translate into a reduced rate of comparison errors.

The above points are practically irrelevant, though, because the real result that matters here is:

the reversed-Z mapping is basically magic. Check it out:

Reversed-Z with a float depth buffer gives a zero error rate in this test. Now, of course you

can make it generate some errors if you keep tightening the spacing of the input depth

values. Still, reversed-Z with float is ridiculously more accurate than any of the other

options.

Reversed-Z with an integer depth buffer is as good as any of the other integer options.

Reversed-Z erases the distinctions between precomposed versus separate

view/projection matrices, and finite versus infinite far planes. In other words, with

18% swap 18% swap 0% swap 0% swap

Reversed Z 0% indist

0% swap

76% indist

0% swap

0% indist

0% swap

76% indist

0% swap

Infinite + reversed-Z 0% indist

0% swap

76% indist

0% swap

0% indist

0% swap

76% indist

0% swap

GL-style standard 56% indist

12% swap

56% indist

12% swap

77% indist

0% swap

77% indist

0% swap

GL-style infinite 59% indist

10% swap

59% indist

10% swap

77% indist

0% swap

77% indist

0% swap

02.02.21, 13:45Depth Precision Visualized | NVIDIA Developer

Page 11 of 11https://developer.nvidia.com/content/depth-precision-visualized

reversed-Z you can compose your projection matrix with other matrices, and you can use

whichever far plane you like, without affecting precision at all.

I think the conclusion here is clear. In any perspective projection situation, just use a floating-

point depth buffer with reversed-Z! And if you can't use a floating-point depth buffer, you should

still use reversed-Z. It isn't a panacea for all precision woes, especially if you're building an

open-world environment that contains extreme depth ranges. But it's a great start.

Nathan is a Graphics Programmer, currently working at NVIDIA on the DevTech software team.

You can read more on his blog here (http://www.reedbeta.com/blog/).

HIGH

PERFORMANCE

COMPUTING

(/HPC)

GAMEWORKS

(/GAMEWORKS%20)

JETPACK

(/EMBEDDED-

COMPUTING)

DESIGNWORKS

(/DESIGNWORKS)

DRIVE (/DRIVE)

English

Copyright © 2021 NVIDIA Corporation Legal Information

(https://www.nvidia.com/en-us/about-nvidia/legal-info/) Privacy Policy

(https://www.nvidia.com/en-us/about-nvidia/privacy-policy/) Contact (/contact)

Cookie policy (https://www.nvidia.com/en-us/about-nvidia/privacy-policy/)

http://www.reedbeta.com/blog/
https://developer.nvidia.com/HPC
https://developer.nvidia.com/gameworks%20
https://developer.nvidia.com/embedded-computing
https://developer.nvidia.com/DESIGNWORKS
https://developer.nvidia.com/DRIVE
https://www.nvidia.com/en-us/about-nvidia/legal-info/
https://www.nvidia.com/en-us/about-nvidia/privacy-policy/
https://developer.nvidia.com/contact
https://www.nvidia.com/en-us/about-nvidia/privacy-policy/

